Решение расчетных задач по общей химии

Решение расчетных задач по общей химии

Задача 226.
Напишите уравнения реакций следующих химических превращений:
Сu → CuS → СuО → CuSO4 → Сu(ОН)2 → СuО → Сu.
Решение:
Cu + S = CuS;
2CuS + 3O2 = 2CuO + 2SO2;
CuO + H2SO4 = CuSO4 + H2O;
CuSO4 + 2NaOH = Cu(OH2 + Na2SO4;
Cu(OH2 = CuO + H2O;
CuO + H2 = Cu + H2O.

 


Задача 227.
Определите массу серной кислоты, которую можно получить из 1000 кг пирита если суммарный выход продуктов всех реакций составляет 70%
Решение:
w% = 70% или 0,7;
M (FeS2) = 120 г/моль;
M (H2SO4) = 98 г/моль.
Уравнения реакций процесса получения серной кислоты из пирита1:

4FeS2 + 11O2 → 2Fe2O3 + 8SO2 + Q;
2SO2 + O2 ↔ 2SO3 + Q;
8SO3 + 8H2O → 8H2SO4.

Запишем суммарное уравнение реакции:

4FeS2 + 15O2 + 8H2O → 2Fe2O3 + 8H2SO4.

Надо понимать то, что если образование продукта, массу которого необходимо определить, идет через ряд промежуточных стадий, то в таких случаях для расчета составляем стехиометрическую схему, которая включает исходный и конечный продукты с учетом их стехиометрических коэффициентов.

Видео:Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Химия ПростоСкачать

Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Химия Просто

Из уравнений реакций процесса получения серной кислоты из пирита, вытекает, что вся содержащаяся в пирите (FeS2) сера расходуется на образование серной кислоты (H2SO4). Из суммарного уравнения реакции следует, что из 1 моль пирита (FeS2) образуется 2 моль серной кислоты (H2SO4), что позволяет составить схему стехиометрического процесса: 

FeS2 → 2H2SO4 

Рассчитаем массу серной кислоты, составив пропорцию по стехиометрической схемы процесса, получим:

120 кг FeS2  ——   (2 . 98 кг H2SO4 
1000 кг FeS2 ——-  х 
х = [1000 (2 . 98)]/120 = 1633,3 кг H2SO4.
mтеорет.(H2SO4) = 1633,3 кг.

Рассчитаем массу серной кислоты по практическому выходу, получим:

mпракт.(H2SO4) = mтеорет.(H2SO4) . w%  = 1633,3 кг . 0,7 = 1143,3 кг.

Ответ: mпракт.(H2SO4) = 1143,3 кг.
 


Задача 228.
Закончите уравнения следующих химических реакций:
1)H2 + Cl→…
2)MgO + H2SO4 →…
3)Al + CuCl→…
4)BaCl2 + ZnSO4 →…
Укажите окислительно-восстановительные реакции, укажите окислитель и восстановитель, процессы окисления и восстановления.
Решение:
а) H2 + Cl2 → 2HCl (гомогенная, ОВР).  
2H0 — 2e- → 2H+ (окисление)
2Cl0 + 2e- → 2Cl-¹ (восстановле́ние). 
Н2— восстановитель, Cl2 — окислитель.

б) MgO + H2SO4 → MgSO4 + H2 (гетерогенная, не ОВР).

Видео:Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по ХимииСкачать

Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по Химии

в) 2Al + 3CuSO4 → Al2(SO4)3 + 3Cu (гетерогенная реакция, ОВР). 
3|Cu2+  +  2е → Cu0 (восстановле́ние)
2|Al0 — 3е  → Al3- (окисление)

г) BaCl + ZnSO4 → ZnCl2 + BaSO4 (гетерогенная, не ОВР).
 


Задача 229.
1) Вычислите объём (н.у.) газа, выделяющегося при действии соляной кислоты на 10 г сульфида алюминия, содержащего 15% примесей. 2) Вычислите объём хлора (н.у.), который необходим для образования из железа хлорида железа (III) массой 65 г, если выход хлорида железа (III) составляет 60% от теоретически возможного.
Решение:
№1. 
Уравнен е реакции имеет вид:

6HCl + Al2S3 → 2AlCl3 + 3H2S

Из уравненя реакции вытекает, что при взаимодействии 1 моля сульфида алюминия выделяется 3 моль сероводорода, т.е. 3n(H2S) = n(Al2S3).

Вычислим массу сульфида алюминия, получим:

m(Al2S3) = 10 . 0,85 = 8,5 г.

Рассчитаем количество сульфида алюминия, получим:

n(Al2S3) 8,5/150 = 0,0567 моль.

Видео:Решение задач по общей химии | Химия ЦТ, ЕГЭСкачать

Решение задач по общей химии | Химия ЦТ, ЕГЭ

Так как n(Al2S3) = 3n(H2S), то количество выделившегося сероводорода рассчитаем так:

n(H2S) = 0,0567 . 3 = 0,17 моль.

Вычислим объем выделившегося сероводорода, получим:

V(H2S) = 0,17 . 22,4 = 3,808 л.

Ответ: V(H2S) =3,808 л.

№2. 
Уравнен е реакции имеет вид:

2Fe + 3Cl2 → 2FeCl3

Из уравненя реакции вытекает, что для образования 2 моль FeCl3 требуется 3 моль хлора, т.е. 3n(Cl2) = 2n(FeCl3).

Видео:Вся практика по общей химии за 6 часов для ЕГЭ| Екатерина СтрогановаСкачать

Вся практика по общей химии за 6 часов для ЕГЭ| Екатерина Строганова

Вычислим массу сульфида алюминия, получим:

Рассчитаем теоретическую массу FeCl3, получим:

m(теор.)(FeCl3) = 65/0,6 = 108,3 г.

Рассчитаем теоретическое количество FeCl3, получим:

n(теор.) (FeCl3) = 108,3/162,5 = 0,6 моль.

Так как 3n(Cl2) = 2n(FeCl3), то 

n(Cl2) = 0,6 . 3/2 = 0,9 моль.

V(Cl2) = 0,9 . 22,4 = 20,16 л.
 


Задача 230.
Определить элемент, последний по порядку заполнения, электрон которого характеризуется следующими значениями квантовых чисел. Представьте электронную формулу в порядке заполнения орбиталей выбранного элемента. n = 4, l = 1, ml = 0, ms = -1/2.
Решение:
Главное квантовое число (n) характеризует энергию электрона в атоме и размер электронной орбитали. Оно соответствует также номеру электронного слоя, на котором находится электрон. Значит, последний электрон в атоме элемента находится на 4 электронном слое, так как n = 4.
Побочное (орбитальное) квантовое число (l) характеризует различное энергетическое состояние электронов на данном уровне, форму орбитали, орбитальный момент импульса электрона. При l = 1 (p-орбиталь) электронное облако имеет форму гантели. Значит, электрон находится на р-орбитали, так как n = 4, l = 1, то электрон находится на 4р-орбитали.
Магнитное квантовое число (ml) характеризует ориентацию орбитали в пространстве, а также определяет величину проекции орбитального момента импульса на ось Z. ml принимает значения от +l до — l, включая 0. Общее число значений ml равно числу орбитальных ячеек в данной электронной оболочке, р-орбиталь содержит три орбитальные ячейки, поэтому три значения mi для р-орбитали (+1, 0 -1). Так как mi = 0, то гантелеобразная орбиталь данного электрона ориентирована в пространстве вертикально.
Магнитное спиновое квантовое число (ms) характеризует проекцию собственного момента импульса электрона на ось Z и принимает значения +1/2 и –1/2, при значении +1/2 электронное облако вращается по часовой стрелке вокруг своей оси, при –1/2 — вращается против часовой стрелки. Так как в нашем примере ms = -1/2, то электронное облако последнего электрона вращается против часовой стрелки.

Видео:8 класс.Ч.1.Решение задач по уравнению реакций.Скачать

8 класс.Ч.1.Решение задач по уравнению реакций.

Тогда

Квантовым числам n = 4, l = 1, ml = 0, ms =-1/2 последнего по порядку заполнения электрона атома, соответствует атому брома:

+35Br …4s25.

Бром – 35 элемент периодической таблицы Электронная формула брома имеет вид:
 
1s2 2s2 2p6 3s2 3p6 4s2 3d10 4p5.

Валентные электроны находятся на 4s и 4р подуровнях — это 4s2 и 4p5. Действительно, бром имеет максимальную валентность (7), поэтому расположен в седьмой группе таблицы Д.И. Менделеева.
 


Задача 231.
Нитрат ртути (II) массой 200 г разложили при 500 градусах в фарфоровом тигле. Рассчитайте массу твердого остатка, оставшегося после нагревания.
Решение:
Уравнение реакции имеет вид:

Hg(NO3)2 = Hg + 2NO2 + O2

Из уравнения реакции вытекает, что при разложении 1 моль нитрата ртути (II), образуется 1 моль ртути, 

Рассчитаем количество  нитрата ртути (II), получим: 

Видео:Расчеты по уравнениям химических реакций. 1 часть. 8 класс.Скачать

Расчеты по уравнениям химических реакций. 1 часть. 8 класс.

n[Hg (NO3)2]  = 200/324,3 = 0,617 моль Hg (NO3)2.

Рассчитаем массу  ртути , получим:

n(Hg) = 0,617 моль;
m(Hg) =  n(Hg)  М(Hg) 0,617 . 200,6  = 123,7 г.

Рассчитайте массу твердого остатка, оставшегося после нагревания, получим:

m(остаток) = n[Hg (NO3)2] — m(Hg) = 200 — 123,7 = 76,3 г.

Ответ: m(остаток) = 76,3 г.


1Через измельченный пирит пропустим водород при нагревании, тем самым получим чистое железо и сероводород: 
FeS2 + 2H2   ⟶ 2Fe + H2S↑.
Образовавшийся сероводород пропустим через азотную кислоту, тем самым получим серную кислоту: 
H2S + HNO3 ⟶ H2SO4 + NO2↑ + H2O.

📽️ Видео

Решение расчетных задач по неорганической химии. Часть 1Скачать

Решение расчетных задач по неорганической химии.  Часть 1

Решение задач по уравнениям реакций, если одно из реагирующих веществ взято в избытке. 1 ч. 9 класс.Скачать

Решение задач по уравнениям реакций, если одно из реагирующих веществ взято в избытке. 1 ч. 9 класс.

Установление эмпирической и молек. формул по массовым долям элем., входящих в состав в-ва. 10 класс.Скачать

Установление эмпирической и молек. формул по массовым долям элем., входящих в состав в-ва. 10 класс.

Все формулы для решения задач | Урок 6 | Полный курс ЕГЭ по химииСкачать

Все формулы для решения задач | Урок 6 | Полный курс ЕГЭ по химии

Химия. Решение расчетных задач методом пропорцийСкачать

Химия. Решение расчетных задач методом пропорций

ТИПОВЫЕ ЗАДАЧИ ПО ХИМИИ. Часть 1.Скачать

ТИПОВЫЕ ЗАДАЧИ ПО ХИМИИ. Часть 1.

ТИПОВЫЕ ЗАДАЧИ ПО ХИМИИ: Химическое Количество Вещества, Моль, Молярная Масса и Молярный ОбъемСкачать

ТИПОВЫЕ ЗАДАЧИ ПО ХИМИИ: Химическое Количество Вещества, Моль, Молярная Масса и Молярный Объем

2 ГЛАВНЫХ формулы в Химии при решении задачСкачать

2 ГЛАВНЫХ формулы в Химии при решении задач

Химия. 11 класс. Решение расчетных задач /19.03.2021/Скачать

Химия. 11 класс. Решение расчетных задач /19.03.2021/

Как научиться решать расчетные задачи ЕГЭ по химии? | Екатерина Строганова | 100балльный репетиторСкачать

Как научиться решать расчетные задачи ЕГЭ по химии? | Екатерина Строганова | 100балльный репетитор

Задачи на ИЗБЫТОК и НЕДОСТАТОК | Самое простое объяснениеСкачать

Задачи на ИЗБЫТОК и НЕДОСТАТОК | Самое простое объяснение

Задачи на примеси. 1 часть. 9 класс.Скачать

Задачи на примеси. 1 часть. 9 класс.

Как решать задачи по химии? Расчет по уравнениям химических реакций | TutorOnlineСкачать

Как решать задачи по химии? Расчет по уравнениям химических реакций | TutorOnline

Как ЛЕГКО понять Химию с нуля — Массовая доля вещества // ХимияСкачать

Как ЛЕГКО понять Химию с нуля — Массовая доля вещества // Химия
Поделиться или сохранить к себе:
Конспекты лекций по химии