Двойной кроссинговер в тригетерозиготах. Задачи 134 — 135

Определение типов гамет и кроссинговер у тригетерозигот

Двойной кроссинговер. Определение взаимного расположения генов А, В и С

 

 

Задача 134.
Локусы А, В и С сцеплены. Определение расстояний с помощью дигибридных анализирующих скрещиваний дало следующие результаты:
ВаС = 22 %, АвС = 26,5 %, ВсА = 8 %. Определите взаимное расположение генов. Почему расстояние между крайними генами меньше суммы расстояний между ними и средним геном? Вычислите теоретическую частоту гамет, образующихся в результате двойного кроссинговера.
Решение:
Если предположить, что ген С расположен слева от гена В, то в этом случае расстояние между геном А и С должно быть равно разности расстояний между генами А — В и В — С, т. е. 8% — 22% = -14%. Но в действительности расстояние между генами А и С совсем другое и равно 26,5%, и уж не -14%, что в приципе неправильно.
Если предположить теперь, что ген С расположен справа от гена В, то в этом случае расстояние между генами А и С должно быть равно сумме расстояний между генами А — В и генами В — С, т. е. 8% + 22% = 30%, что примерно соответствует расстоянию, установленному опытным путем. Получается, что это предположение более правильное, и расположения генов А, В и С в хромосоме схематически можно изобразить следующим образом: ABC (А — 8%, B — 22%, C — 30%).

Теоретическая частота кроссинговера между генами A и C равна: rfAC = (8% + 22% = 30%), не соответствует практической частоте кроссинговера между генами A и C = 26,5%. Это возможно только тогда, если предположить, что кроссинговер между генами А и С увеличивается. Это возможно тогда когда кроссинговер между генами А и В как бы стимулирует дополнительный кроссинговер между генами А и С, т. е. это пример комбинативного влияния гена В или А на кроссинговер генов на участке А-С.

Для расчета теоретической частоты гамет, образующихся в результате двойного кроссинговера необходимо определить частоту теоретического двойного кроссинговера, которая будет равна произведению одиночных кроссинговеров: 0,08 * 0,22 = 0,0176 = 1,76%. Тогда вероятность гамет образующихся в результате двойного кроссинговера равна 0,88% (1,76%/2 = 0,88%). Следовательно, гаметы с двойным кроссинговером ABc и abC типа (частота появления – 1,76/2%), по 0,88 каждой.

Вероятность двойного кроссинговера между генами А и С должнаа быть равна произведению процентов кроссинговера на участках АВ (8%) и ВС (22%), т.е. (8/100) . (22/100) * 100% = 1,76%. 

Hам нужно определить коэффициент коинциденции — показатель степени совпадения наблюдаемого числа перекрестов с ожидаемым числом, учитывающий проявление интерференции. Интерференцию измеряют отношением наблюдаемого числа двойных перекрестов к теоретически ожидаемому. Это отношение в генетике называют величиной совпадения, или коинциденцией, и выражают в долях единицы. В приведенном примере она равна разности между практической частотой кроссинговера между генами A и C и теоретической частотой кроссинговера между этими генами разделенный на 2: (30 — 26,5)/2 = 1,75.

Степень ДНК-интерференции оценивается с помощью коэффициента коинденции (C). Коэффициент коинциденции в нашем случае равен: 0,9943 (0,0175/0,0176 = 0.9943). Так как коэффициент коинциденции меньше единицы (С < 1), то ДНК-интерференция положительна, то есть вероятность прохождения одного кроссинговера уменьшает вероятность прохождения другого.


Определение типов гамет у тригетерозигот при кроссинговере

Задача 135. 
Какие типы гамет и в каком процентном соотношении образуются из особи с генотипом ABC||abc, если частота кроссинговера между сцепленными генами составляет 20%?
Решение:
У тригетерозигот происходит как одинарный кроссинговер между первым и вторм генами (АВ) и между вторым и третьим генами (ВС), но еще и дополнительно происходит двойной кроссинговер, возникающий в результате одновременной рекомбинации на участке между первым и вторым генами и между вторым и третьим генами (AB и BC).  
В силу линейного расположения генов на хромосоме расстояние между генами А и С можно определить как сумму расстояний между генами A и B и генами B и C: 
AC = AB + BC = 20%.
Частота кроссинговера между генами A и C равна: rfAC = (10% + 10%) – (2 . двойной кроссинговер). Поскольку нам не известен коэффициент коинциденции1, то мы можем определить только частоту теоретического двойного кроссинговера, которая будет равна произведению одиночных кроссинговеров: (10%/100%) . (10%/100%) = (0,1 . 0,1) = 0,01 = 1%. Отсюда rfAC = (10% + 10%) — (2 1%) = 18%.
У тригетерозиготы с генотипом Abc||aBC будет образовываться восемь типов гамет:
ABC|, abc| — некроссоверные гаметы;
кроссоверный класс гамет, возникающий в результате рекомбинации на участке AB — aBC| и  Abc|;
кроссоверный класс гамет, возникающий в результате рекомбинации на участке BC — ABc| и abC|;
двойной кроссоверный класс гамет, возникающий в результате одновременной рекомбинации на участке AB и BC — AbC| и aBc|.
Для того чтобы определить частоту гамет, которые образуются в результате одиночных обменов на участках между генами A и B или генами B и C, необходимо воспользоваться показателями rfAB и rfBC. Нам известно, что частота кроссинговера между генами A и B, которая является суммой частот одиночного кроссинговера между этими генами и двойного кроссинговера, равна 10%. Следовательно, доля гамет aBC| и  Abc| типа равна 9% (10% – 1%).  Каждая из этих гамет образуется с частотой по 4,5% (9%/2 = 4,5%).
Нам известно, что частота кроссинговера между генами B и C, которая является суммой частот одиночного кроссинговера между этими генами и двойного кроссинговера, равна 10%. Следовательно, доля гамет ABc| и abC типа равна 9% (10% – 1%).  Каждая из этих гамет образуется с частотой по 4,5% (9%/2 = 4,5%).
Так как частота теоретического двойного кроссинговера составляет 1%, следовательно, доля гамет AВс| и aBc| типа равна 1%.  Каждая из этих гамет образуется с частотой по 0,5% (1%/2 = 0,5%). 
Наконец, мы можем определить долю гамет родительского класса, которая равна 100% – 9% (частота образования гамет aBC| и  Abc| типа) – 9% (частота образования гамет aBC| и  Abc| типа) – 1% (частота образования гамет с двойным кроссинговером — AbC| и aBc|) = 81% (100% — 9% -9% -1%). Каждая из родительских гамет при этом образуется с частотой 40,5% (81%/2 = 40,5%).
Запишем схему образования гамет
Р: ABC||abc
Г: 
ABC| — 40,5%; abc| — 40,5% — некроссоверные гаметы;
aBC| — 4,5%; Abc| — 4,5% — кроссоверный класс гамет, возникающий в результате рекомбинации на участке AB;
ABc| — 4,5%; abC| — 4,5% — кроссоверный класс гамет, возникающий в результате рекомбинации на участке BC;
AbC| — 0,5%; aBc| — 0,5% — гаметы, возникающие в результате двойного кроссинговера.


Коэффициент коинциденции

Задача 135/1.
Локусы А, В и С сцеплены. Определение расстояний с помощью дигибридных анализирующих скрещиваний дало следующие результаты:
LAB = 22%, LBC = 26,5%, LAC = 8%.
а) Определите взаимное расположение генов.
б) Почему расстояние между крайними генами меньше суммы расстояний между ними и средним геном?
в) Вычислите теоретическую частоту гамет, образующихся в результате двойного кроссинговера.
г) Определите степень ДНК-интерференции.
Решение:
а) Если предположить, что гены расположены в алфавитном порядке, то в этом случае расстояние между геном А и С должно быть равно сумме расстояний между генами А — В и В — С, т.е. 8% + 22% = 30%. Но в действительности расстояние между генами А и С совсем другое и равно 8%, и уж не 30%, что в приципе неправильно.
Так как максимальное расстояние наблюдается между генами В и С, то более вероятное расположение гена А между генами В и С: В—А—С. При таком расположении генов расстояние между В и С должно быть равно сумме расстояний между генами А — В и А — С, т.е. 8% + 22% = 26%, что примерно соответствует расстоянию, установленному опытным путем. Получается, что это предположение более правильное, и расположения генов В, А и С в хромосоме схематически можно изобразить следующим образом: 
В—А—C (В — 22%, А — 8%, C — 26%,5%).
 
б) Теоретическая частота кроссинговера между генами В и C равна: rfВC = (8% + 22% = 30%), не соответствует практической частоте кроссинговера между генами В и C = 26,5%. Это возможно только тогда, если предположить, что кроссинговер между генами В и С увеличивается. Это возможно тогда когда кроссинговер между генами В и А как бы стимулирует дополнительный кроссинговер между генами А и С, т. е. это пример комбинативного влияния гена В или А на кроссинговер генов на участке В-С.

в) При расположении генов: В—А—С образуется тригетерозигота — BAC||bac. У тригетерозиготы с генотипом BAC||bac будет образовываться восемь типов гамет:
BAC| и bac| — некроссоверные гаметы;
кроссоверный класс гамет, возникающий в результате рекомбинации на участке BA — bAC| и  Bac|;
кроссоверный класс гамет, возникающий в результате рекомбинации на участке AC — BAc| и baC|;
двойной кроссоверный класс гамет, возникающий в результате одновременной рекомбинации на участке BA и AC — BaC| и bAc|.
Определим частоту практического двойного кроссинговера, получим:
(30% — 26,5%)/2 = 1,75%.
Для того чтобы определить частоту гамет, которые образуются в результате одиночных обменов на участках между генами B и A или генами A и C, необходимо воспользоваться показателями rfBA (8%) и rfAC (22%). Нам известно, что частота кроссинговера между генами В и А, которая является суммой частот одиночного кроссинговера между этими генами и двойного кроссинговера, равна 8%. Следовательно, доля гамет bAC| и  Bac| типа равна 6,25% (8% – 1,75% = 6,25%).  Каждая из этих гамет образуется с частотой по 3,125% (6,25%/2 = 3,125%).
Нам известно, что частота кроссинговера между генами А и C, которая является суммой частот одиночного кроссинговера между этими генами и двойного кроссинговера, равна 22%. Следовательно, доля гамет BAc| и baC| типа равна 20,25% (22% – 1,75% = 20,25%). Каждая из этих гамет образуется с частотой по 10,125% (20,25%/2 = 10,12%).
Так как частота практического двойного кроссинговера составляет 1,75%, следовательно, доля гамет BaC| и bAc| типа равна 1,75%.  Каждая из этих гамет образуется с частотой по 0,875% (1,75%/2 = 0,875%). 
Наконец, мы можем определить долю гамет родительского класса BAC| и bac|, которая равна 100% – 6,25% (частота образования гамет bAC| и  Bac| типа) – 20,25% (частота образования гамет BAc| и baC| типа) – 1,75% (частота образования гамет с двойным кроссинговером — BaC| и bAc|) = 71,75% (100% — 6,25% -20,25% -1,75%). Каждая из родительских гамет при этом образуется с частотой 35,875% (71,75%/2 = 35,875%).
Запишем схему образования гамет
Р: ABC||abc
Г: 
BAC| — 35,875%; bac| — 35,875% — некроссоверные гаметы;
bAC| — 3,125%; Bac| — 3,125% — кроссоверный класс гамет, возникающий в результате рекомбинации на участке BA;
BAc| — 10,125%; baC| — 10,125% — кроссоверный класс гамет, возникающий в результате рекомбинации на участке AC;
BaC| — 0,875%; bAc| — 0,875% — гаметы, возникающие в результате двойного кроссинговера.

г) Степень ДНК-интерференции оценивается с помощью коэффициента коинденции (C).
Для определения коэффициента коинденции нужно знать частоту теоретического двойного кроссинговера, которая будет равна произведению одиночных кроссинговеров: (8%/100%) . (22%/100%) = (0,08 . 0,22) = 0,0176 = 1,76%. Так как частота практического двойного кроссинговера нам известна и составляет 1,75%.
Тогда коэффициент коинденции равен: 0,9943 (0,0175/0,0176 = 0,9943). Так как С меньше единицы (0,9943 < 1), то ДНК-интерференция положительна, то есть вероятность прохождения одного кроссинговера уменьшает вероятность прохождения другого.


1Коэффициент коинциденции — отношение наблюдаемого числа двойных перекрестов к теоретически ожидаемому. С помощью коэффициента коинденции опеделяют степень ДНК-интерференции, то  есть вероятность прохождения двойного кроссинговера. В генетике это отношение называют величиной совпадения, или коинциденцией, и выражают в долях единицы, или в процентах.


 

💥 Видео

Задача по генетике. Сцепленное наследование. КроссинговерСкачать

Задача по генетике. Сцепленное наследование. Кроссинговер

Типы генетических задач в ЕГЭ: как определить? Кроссинговер, сцепление, аутосомыСкачать

Типы генетических задач в ЕГЭ: как определить? Кроссинговер, сцепление, аутосомы

7 Задачи на кроссинговерСкачать

7  Задачи на кроссинговер

Кроссинговер. Хромосомные карты. Видеоурок по биологии 10 классСкачать

Кроссинговер. Хромосомные карты. Видеоурок по биологии 10 класс

Кроссинговер (Основы наследственности и изменчивости) | Биология ЕГЭ, ЦТСкачать

Кроссинговер (Основы наследственности и изменчивости) | Биология ЕГЭ, ЦТ

10. Сцепление генов и кроссинговер. Решение генетических задач 9 - 11 классСкачать

10. Сцепление генов и кроссинговер. Решение генетических задач 9 - 11 класс

Урок по теме "Кроссинговер" - ЦТ, ЕГЭ, ЗНОСкачать

Урок по теме "Кроссинговер" - ЦТ, ЕГЭ, ЗНО

Картирование хромосом. Решение задач на расположение генов в хромосоме.Скачать

Картирование хромосом. Решение задач на расположение генов в хромосоме.

Мини-курс по задачам по генетике. Урок 3, Сцепление генов с кроссинговером |ЕГЭ БИОЛОГИЯ |Freedom|Скачать

Мини-курс по задачам по генетике. Урок 3, Сцепление генов с кроссинговером |ЕГЭ БИОЛОГИЯ |Freedom|

Сложная генетика | ЕГЭ Биология | Даниил ДарвинСкачать

Сложная генетика | ЕГЭ Биология | Даниил Дарвин

10. Морганиды и процент кроссинговера в задачахСкачать

10. Морганиды и процент кроссинговера в задачах

Мини-курс по задачам по генетике. Урок 4. 2 гена в Х-хромосоме + кроссинговер |ЕГЭ БИОЛОГИЯ|Freedom|Скачать

Мини-курс по задачам по генетике. Урок 4. 2 гена в Х-хромосоме + кроссинговер |ЕГЭ БИОЛОГИЯ|Freedom|

Сцепленное наследование генов и кроссинговерСкачать

Сцепленное наследование генов и кроссинговер

Что такое кроссинговер? Душкин объяснитСкачать

Что такое кроссинговер? Душкин объяснит

Учимся решать задачи на неполное сцепление генов (теоретические основы алгоритма)Скачать

Учимся решать задачи на неполное сцепление генов (теоретические основы алгоритма)

Задачи по генетике: Сцепление и кроссинговер 1Скачать

Задачи по генетике: Сцепление и кроссинговер 1

Решение задач по Генетике: нахождение расстояния между сцепленными генами (картирование хромосом)Скачать

Решение задач по Генетике: нахождение расстояния между сцепленными генами (картирование хромосом)

Самые важные термины генетики. Локусы и гены. Гомологичные хромосомы. Сцепление и кроссинговер.Скачать

Самые важные термины генетики. Локусы и гены. Гомологичные хромосомы. Сцепление и кроссинговер.

ГЕНЕТИКА! Сцепленное с полом НАСЛЕДОВАНИЕ | Подготовка к ЕГЭ 2022 по БИОЛОГИИСкачать

ГЕНЕТИКА! Сцепленное с полом НАСЛЕДОВАНИЕ | Подготовка к ЕГЭ 2022 по БИОЛОГИИ

Как решать генетические задачи на кроссинговер и сцепленное с полом наследование?ЕГЭ по биологииСкачать

Как решать генетические задачи на кроссинговер и сцепленное с полом наследование?ЕГЭ по биологии
Поделиться или сохранить к себе:
Конспекты лекций по химии