Электролиз соли, коррозия металлов. Задачи 153 — 155

Составление уравнений электродных процессов коррозии и электролиза

 

Выход хрома по току. Электролиз сульфата хрома

 

Задача 153.
Деталь хромируется в водном растворе Сr2(SО4)3. Сила тока – 3 А. Определить продолжительность электролиза, если на поверхности детали необходимо нанести электрокристаллизацией 1,3 г хрома и если выход по току принять равным 40%.
Решение:
Для решения задачи используем уравнение:

Bm = (mn . F * 100%)/(М . I . t), где

Bm — выход по току (40%); mf — масса металла на детали при электролизе, 1,3 г; I — сила тока, 3,0 А; t — время проведения электролиза, с; F — число Фарадея, 96500 Кл; М — молярная масса (для хрома М = 52 г/моль); n — заряд иона в единицах e (ионы хрома в растворе сульфата хрома имеют заряд n = +3).
Подставляя полученную формулу в выражение для продолжительность электролиза, получим:

t = (mf  . n . F . 100%)/(Bm . M . I).

Приведя заданные значения к одной системе размерностей, проведём вычисление:

t = (3,25 . 3 . 96500 . 100%)/(40% . 52 . 3) = 6031,25 с.

Ответ: t = 6031,25 с.
 


Коррозия сплава Sn – Zn

Задача 154.
Составьте электронные уравнения процессов, происходящих при коррозии сплава Sn – Zn в кислой среде и во влажном воздухе. Рассчитайте ЭДС для этого контакта. Какие продукты коррозии будут образовываться в каждой среде?
Решение:
Стандартные электродные потенциалы цинка и олова равны соответственно -0,762 В и -0,136 В.  Окисляться, т.е. подвергаться коррозии, будет цинк. Цинк имеет более электроотрицательный стандартный электродный потенциал (-0,763 В), чем олово (-0,180 В), поэтому он является анодом, олово – катодом.

а) Коррозия пары металлов Zn/Sn в атмосфере влажного газа:

Анод          Zn0 – 2  = Zn2+ 
Катод         1/2O2 + H2O + 2 = 2ОН

Схема коррозии:

Zn + 1/2O2 + H2O = Zn(OH)2

Так как ионы Zn2+ с гидроксид-ионами ОН образуют малорастворимый гидроксид, то продуктом коррозии будет Zn(OH)2:

Zn2+  + 2OH = Zn(OH)2.

б) Коррозия пары металлов Zn/Sn в кислой среде:

Анод          Zn0 – 2  = Zn2+ 
Катод         2Н+ + 2  = Н2
Схема коррозии:

Zn  +  2H+ = Zn2+  + H2

При этом выделяется газообразный водород. Происходит интенсивное разрушение цинка, продуктом коррозии будет газообразный водород и соединение цинка с кислотным остатком (соль).
Таким образом, при контакте цинка и олова коррозии будет подвергаться цинк.
Для определения ЭДС гальванического элемента необходимо из потенциала катода вычесть потенциал анода, т е. при вычислении ЭДС элемента меньший электродный потенциал вычитается из большего (в алгебраическом смысле), получим:

ЭДС = -0,136 — (-0,763) = +0,627 B.

Ответ: +0,627 B. 
 


Коррозия железа. Катодное и анодное покрытие железа

Задача 155.
В раствор серной кислоты поместили две железных пластинки, одна из которых частично покрыта свинцом, а другая титаном. В каком случае процесс коррозии железа протекает менее интенсивно? Ответ мотивируйте с помощью расчета ЭДС. Составьте электронные уравнения анодного и катодного процессов. О каком покрытии идет речь в каждом случае?
Решение:
Стандартные электродные потенциалы железа, свинца и титана равны соответственно -0,440 В, -0,126 В и -1,750 В.

а) Коррозия железной пластинки покрытой свинцом в растворе серной кислоты

Окисляться, т.е. подвергаться коррозии, будет железо. Железо имеет более электроотрицательный стандартный электродный потенциал (-0,440 В), чем свинца (-0,126 В), поэтому оно является анодом, свинец – катодом.

Анод         Fе0 – 2   = Fe2+ 
Катод         2Н+ + 2   = Н2
             Fe0 + 2H+ = Fe2+  + H2
Так как ионы Fe2+ с ионами SO42- образуют растворимую соль, придающую светло-бурую окраску раствора, то продуктом коррозии будет FeSO4:

 Fe2+ + SO42 = FeSO4 (ионная форма);
 Fe + Н2SO4 = FeSO4 + Н2↑ (молекулярная форма).

Образуется сульфат железа и при этом выделяется газообразный водород. Происходит интенсивное разрушение железной пластинки.
Таким образом, при контакте железа и свинца коррозии в растворе кислоты будет подвергаться железо.
Для определения ЭДС гальванического элемента необходимо из потенциала катода вычесть потенциал анода, т е. при вычислении ЭДС элемента меньший электродный потенциал вычитается из большего (в алгебраическом смысле), получим:

ЭДС = -0,136 — (-0,763) = +0,627 B.

Так как потенциал свинца выше потенциала железа, то покрытие железа свинцом является катодным покрытием.

б) Коррозия железной пластинки покрытой титаном в растворе серной кислоты

Окисляться, т.е. подвергаться коррозии, будет титан. Титан имеет более электроотрицательный стандартный электродный потенциал (-1,750 В), чем железа (-0,440 В), поэтому он является анодом, железо – катодом.

Анод         Ti0 – 2   = Ti2+ 
Катод         2Н+ + 2  = Н2↑             

Схема коррозии:

Ti0 + 2H+ =  Ti2+  +  Н2

Так как ионы Ti2+ с ионами SO42- образуют растворимую соль, то продуктом коррозии будет TiSO4:

Ti2+ + SO42- = TiSO4 (ионная форма);
Ti + Н2SO4 = TiSO4 + Н2↑ (молекулярная форма).

Образуется сульфат титана и при этом выделяется газообразный водород. Происходит интенсивное разрушение титанового покрытия.
Таким образом, при контакте железа и титана коррозии в растворе кислоты будет подвергаться титан.
Для определения ЭДС гальванического элемента необходимо из потенциала катода вычесть потенциал анода, т е. при вычислении ЭДС элемента меньший электродный потенциал вычитается из большего (в алгебраическом смысле), получим:

ЭДС = -0,44 — (-1,750) = +1,31 B.

Так как потенциал титана отрицательнее потенциала железа, то покрытие железа титаном является анодным покрытием.
Таким образом, процесс коррозии железа протекает менее интенсивно в случае покрытия железной пластинки титаном.


 

💡 Видео

Коррозия металла. Химия – ПростоСкачать

Коррозия металла. Химия – Просто

Технологический институт - гальванический элемент, электролиз, коррозия. Задачи.Скачать

Технологический институт -  гальванический элемент, электролиз, коррозия. Задачи.

Коррозия металлов и меры по ее предупреждению. 8 класс.Скачать

Коррозия металлов и меры по ее предупреждению. 8 класс.

Электролиз. 10 класс.Скачать

Электролиз. 10 класс.

Коррозия металловСкачать

Коррозия металлов

Задачи на гальванический элемент. Продукты в ОВР. Ч.5-4.Скачать

Задачи на гальванический элемент. Продукты в ОВР. Ч.5-4.

Электрохимическая коррозия (алюминий — медь)Скачать

Электрохимическая коррозия (алюминий — медь)

Общая и неорганическая химия. Электролиз солей и коррозия металловСкачать

Общая и неорганическая химия. Электролиз солей и коррозия металлов

Коррозия металлов и способы защиты от нееСкачать

Коррозия металлов и способы защиты от нее

ЭлектролизСкачать

Электролиз

Часть 3-2. Электролиз водных растворов. Примеры решений уравнений (подробно).Скачать

Часть 3-2. Электролиз водных растворов. Примеры решений уравнений (подробно).

Электрохимическая коррозияСкачать

Электрохимическая коррозия

Урок 22. Коррозия металлов. Химия 11 классСкачать

Урок 22. Коррозия металлов. Химия 11 класс

90. Электролиз (часть 1)Скачать

90. Электролиз (часть 1)

Электролиз расплавов и растворов солей.Теория для задания 22 ЕГЭ по химииСкачать

Электролиз расплавов и растворов солей.Теория для задания 22 ЕГЭ по химии

8. Коррозия металловСкачать

8. Коррозия металлов

Задачи №34 с электролизом. ЕГЭ по химииСкачать

Задачи №34 с электролизом. ЕГЭ по химии

Коррозия металлов и способы защиты от неё. Видеоурок 25. Химия 9 классСкачать

Коррозия металлов и способы защиты от неё. Видеоурок 25. Химия 9 класс

Военный дневник с Алексеем Арестовичем. День 719-й | Николай Фельдман | АльфаСкачать

Военный дневник с Алексеем Арестовичем. День 719-й | Николай Фельдман | Альфа

Задача №34 на электролиз и протоны | ЕГЭ по химии 2024Скачать

Задача №34 на электролиз и протоны | ЕГЭ по химии 2024
Поделиться или сохранить к себе:
Конспекты лекций по химии