Электролиз (Electrolysis). Уравнение Фарадея | Задания 271-273

Составление электронных уравнений процессов, происходящих на электродах при электролизе солей

 

 

Задание 271.

Составьте электронные уравнения процессов, происходящих на угольных электродах при электролизе раствора AgNO3. Если электролиз проводить с серебряным анодом, то его масса уменьшается на 5,4 г. Определите расход электричества при этом. Ответ: 4830 Кл.

Решение:
Процессы, происходящие на угольных электродах при электролизе нитрата серебра:

Стандартный электродный потенциал системы Ag+ +    = Ag0 (+0,80 В) значительно положительнее потенциала водородного электрода в кислой среде (0,00 В). В  этом случае на катоде будет происходить электрохимическое восстановление меди Ag+:

Ag+ +    = Ag0

На аноде будет происходить электрохимическое окисление воды, приводящее к выделению кислорода:

2О — 2   = О2↑ + 4Н+,

поскольку, отвечающий этой системе стандартный электродный потенциал (+1,23 В) значительно ниже, чем стандартный электродный потенциал, характеризующий систему из кислородной кислоты. Ионы NO3, движущиеся при этом к аноду, будут накапливаться  в анодном пространстве.

Расход электричества, необходимый для проведения электролиза находим из уравнения Фарадея, имея в виду, что МЭ(Ag) = 107,868 г/моль, m(Ag) = 5,4 г; Q = I . t, получим:

m(B) = МЭ(B) . t/F 
Q = I . t = m(B) F/ МЭ(B). = 5,4  .  96500/107,868 = 4830 Кл;

Здесь m(B) – масса выделившегося вещества, г; МЭ(В) – масса эквивалента вещества, г/моль; I – сила тока,  А;  t – время, с; F – число Фарадея, 96500 Кл/моль.

Ответ: Q = 4830 Кл.


Задание 272.
Электролиз раствора СuSO4 проводили в течение 15 мин при силе тока 2,5 А. Выделилось 0,72 г меди. Составьте электронные уравнения процессов, происходящих на электродах в случае медного и угольного анодов. Вычислите выход по току (отношение массы выделившегося вещества к теоретически возможной). Ответ: 97,3%.
Решение:
а) Электролиз медного купороса на угольных электродах:
Стандартный электродный потенциал системы Cu2+ + 2   = Cu0 (+0,34 В) значительно положительнее потенциала водородного электрода в кислой среде (0,00 В). В  этом случае при электролизе соли на угольных электродах, на катоде будет происходить электрохимическое восстановление меди Cu2+:

Cu2+ + 2   = Cu0

На аноде будет происходить электрохимическое окисление воды, приводящее к выделению кислорода:

2О — 4   = О2↑ + 4Н+,

поскольку, отвечающий этой системе стандартный электродный потенциал (+1,23 В) значительно ниже, чем стандартный электродный потенциал (+2,01 В), характеризующий систему: 2SO42- — 2   = 2S2O82-. Ионы SO42-, движущиеся при этом к аноду, будут накапливаться  в анодном пространстве.

б) Электролиз медного купороса в случае медного анода:
При электролизе медного купороса на медном аноде на катоде будет электрохимическое восстановление меди Cu2+. На аноде будет происходить электрохимическое окисление меди, приводящее к выделению в анодное пространство ионов Cu2+, поскольку  отвечающий этой системе стандартный электродный потенциал (+0,34 В) значительно ниже, чем стандартный потенциал (+1,23 В), характеризующий систему:

2О — 4   = О2↑ + 4Н+

т. е. в данном случае при электролизе будет происходить растворение медного анода и отложение меди на катоде. Электрохимические процессы при данном типе электролиза:

Катод: Cu2+ + 2   = Cu0;
Анод: Cu0 — 2   = Cu2+

в) Вычисление выхода меди по току.
Массу теоретического выхода меди вычислим из уравнения Фарадея, имея в виду, что 15 мин = 900 с и МЭ(Cu) = 31,77 г/моль, I = 2,5 A, получим:

m(Cu) = МЭ(В) . t/F = 31,77 . 2,5 . 900/96500 = 0,74 г.

Здесь m(B) – масса выделившегося вещества, г; МЭ(В) – масса эквивалента вещества, г/моль; I – сила тока,  А;  t – время, с; F – число Фарадея, 96500 Кл/моль.

Выход по току (отношение массы выделившегося вещества к теоретически возможной) равен:

m%  =  (0.72 . 100)/0,74 = 97,3% 

Ответ: m%  = 97,3%.


Задание 273.
Составьте электронные уравнения процессов, происходящих на графитовых электродах при электролизе расплавов и водных растворов NaCl и КОН. Сколько литров (н.у.) газа выделится на аноде при электролизе гидроксида калия, если электролиз проводить в течение 30 мин при силе тока 0,5 А? Ответ: 0,052 л.
Решение:
а) При электролизе расплава соли NaCl происходит диссоциация: NaCl ⇔ Na+ + Cl. Ионы натрия движутся к катоду, где окисляются до металлического натрия:

Na+ +     = Na0

Ионы хлора движутся к аноду, где восстанавливаются до газообразного хлора:

2Сl — 2   = Cl20

Таким образом, при электролизе расплава NaCl на катоде выделяется металлический натрий, а на аноде – газообразный хлор.
При электролизе раствора соли хлорида натрия в электрохимических процессах кроме ионов натрия и хлора участвует и вода. Стандартный электродный потенциал системы Na+ +    = Na0 (-2,71 В) значительно отрицательнее потенциала водородного электрода в нейтральной среде (-0,41 В). Поэтому на катоде будет происходить электрохимическое восстановление воды, сопровождающееся выделением водорода, а ионы Na+, приходящие к катоду, будут накапливаться в прилегающей к нему зоне (катодное пространство):

2О + 2   = Н2↑  + 2ОН

На аноде будет происходить электрохимическое окисление ионов Cl-, приводящее к выделению хлора:

2Сl — 2   = Сl20

поскольку  отвечающий этой системе стандартный электродный потенциал (+1,36 В) значительно ниже, чем стандартный потенциал (+1,23 В), характеризующий систему

2О — 4   = О2↑  + 4Н+

б) КОН — сильный электролит, который диссоциирует по схеме:

КОН ⇔ К+ + ОН

При электролизе расплава КОН ионы калия движутся к катоду, где окисляются до свободного калия:

К+ +    = К0

Гидроксид-ионы движутся к аноду, где восстанавливаются с образованием газообразного кислорода и воды:

4OH — 4   = O2↑  + 2H2O

Таким образом, при электролизе расплава КОН продуктами электролиза являются металлический калий (у катода) и кислород и вода (у анода).

При электролизе раствора КОН в электрохимических процессах кроме ионов калия и  гидроксид-ионов участвует и вода. Стандартный электродный потенциал системы К+ +    = К0 (-2,92 В) значительно отрицательнее потенциала водородного электрода в нейтральной среде (-0,41 В). Поэтому на катоде будет происходить электрохимическое восстановление воды, сопровождающееся выделением водорода, а ионы К+, приходящие к катоду, будут накапливаться в прилегающей к нему зоне (катодное пространство), образуется гидроксид калия:

2О + 2   = Н2↑  + 2ОН

На аноде будет происходить электрохимическое окисление ионов ОН-, приводящее к выделению кислорода:

4ОН — 4   = О2↑  + 2Н2О,

поскольку отвечающий этой системе стандартный электродный потенциал (+0,54 В) значительно ниже, чем стандартный электродный потенциал (+1,23 В), характеризующий систему 2Н2О — 4   = О2  + 4Н+.

Таким образом, продуктами электролиза раствора КОН являются газообразные водород и кислород, а в растворе – гидроксид калия КОН.

в) Объём выделившегося газа на аноде находим из уравнения Фарадея, которое представим в следующем виде: 

V = VЭ . I. t/F

Здесь V – объём выделившегося газа, л; m(B) – масса выделившегося вещества, г; VЭэквивалентный объём газа, л/моль; I – сила тока равна 0,5 А;  t – время равно 1800 с; F – число Фарадея, 96500 Кл/моль.

Поскольку при нормальных условиях эквивалентный объём кислорода равен 5,6 л/моль, получим:

V(О2) = (5,6 . 0,5 . 1800)/96500 = 0,652 л

Ответ: V(О2)  =  0,052 л.


💡 Видео

Закон Фарадея (теория + задача). Электролиз. Часть 4-1.Скачать

Закон Фарадея (теория + задача). Электролиз. Часть 4-1.

Электролиз. Закон Фарадея. 10 класс.Скачать

Электролиз. Закон Фарадея. 10 класс.

Все об электролизе и задании 20 за 20 минут | Химия ЕГЭ 2023 | УмскулСкачать

Все об электролизе и задании 20 за 20 минут | Химия ЕГЭ 2023 | Умскул

Закон ФарадеяСкачать

Закон Фарадея

ФИЗХА 10-11 класс | Электролиз, закон Фарадея | Олимпиадные задачи по химииСкачать

ФИЗХА 10-11 класс | Электролиз, закон Фарадея | Олимпиадные задачи по химии

Урок 298. Электрический ток в жидкостях. Закон Фарадея для электролизаСкачать

Урок 298. Электрический ток в жидкостях. Закон Фарадея для электролиза

Электролиз. Задача на закон Фарадея с площадью поверхности и выходом по току.Скачать

Электролиз. Задача на закон Фарадея с площадью поверхности и выходом по току.

Задачи на электролиз с растворимым анодом.Скачать

Задачи на электролиз с растворимым анодом.

Часть 3-2. Электролиз водных растворов. Примеры решений уравнений (подробно).Скачать

Часть 3-2. Электролиз водных растворов. Примеры решений уравнений (подробно).

Электролиз. 10 класс.Скачать

Электролиз. 10 класс.

Электролиз. Часть 1. Процесс электролиза, основные закономерности.Скачать

Электролиз. Часть 1. Процесс электролиза, основные закономерности.

Электрический ток в жидкостях. Закон электролиза | Физика 10 класс #60 | ИнфоурокСкачать

Электрический ток в жидкостях. Закон электролиза | Физика 10 класс #60 | Инфоурок

Электролиз. Решение задач. 1 часть. 10 класс.Скачать

Электролиз. Решение задач. 1 часть. 10 класс.

ЭлектролизСкачать

Электролиз

Опыты по физике. Электролиз раствора сульфата меди (II). Первый закон ФарадеяСкачать

Опыты по физике. Электролиз раствора сульфата меди (II). Первый закон Фарадея

Расчётные задачи с нуля. Глава 6. ЭлектролизСкачать

Расчётные задачи с нуля. Глава 6. Электролиз

Электролиз. Законы Фарадея. ЗадачиСкачать

Электролиз. Законы Фарадея. Задачи

Задачи на закон Фарадея. Средняя сложность. Электролиз. Часть 4-2.Скачать

Задачи на закон Фарадея. Средняя сложность. Электролиз. Часть 4-2.

Химическое действие электрического тока. Закон Фарадея. Практическая часть. 8 класс.Скачать

Химическое действие электрического тока. Закон Фарадея. Практическая часть. 8 класс.

Закон Фарадея и плотность тока. Олимпиадная задача. Физика+химия.Скачать

Закон Фарадея и плотность тока. Олимпиадная задача. Физика+химия.
Поделиться или сохранить к себе:
Конспекты лекций по химии